

A008612


Molien series of 2dimensional representation of SL(2,3).


1



1, 0, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 5, 4, 4, 5, 5, 4, 6, 5, 5, 6, 6, 5, 7, 6, 6, 7, 7, 6, 8, 7, 7, 8, 8, 7, 9, 8, 8, 9, 9, 8, 10, 9, 9, 10, 10, 9, 11, 10, 10, 11, 11, 10, 12, 11, 11, 12, 12, 11, 13, 12, 12, 13, 13, 12, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 2 ).


REFERENCES

D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N))
William A. Stein, The modular forms database
Index entries for Molien series
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,1).


FORMULA

a(n) = a(n2)+a(n3)a(n5). G.f.: (x^4x^2+1) / ((x1)^2*(x+1)*(x^2+x+1)).  Colin Barker, Jan 07 2014
a(n) ~ n/6 (first difference is 6periodic).  Ralf Stephan, Apr 29 2014
a(n) = 2*floor(n/3)n/2+(3+(1)^n)/4.  Tani Akinari, Oct 23 2014


MAPLE

(1+x^12)/(1x^6)/(1x^8); seq(coeff(series(%, x, 2*n+1), x, 2*n), n=0..100);


MATHEMATICA

CoefficientList[Series[(x^4  x^2 + 1)/((x  1)^2 (x + 1) (x^2 + x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 23 2014 *)


PROG

(PARI) Vec((x^4x^2+1)/((x1)^2*(x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 07 2014
(MAGMA) [2*Floor(n/3)n/2+(3+(1)^n)/4: n in [0..100]]; // Vincenzo Librandi, Oct 23 2014


CROSSREFS

Sequence in context: A074746 A133188 A261036 * A029320 A187450 A187449
Adjacent sequences: A008609 A008610 A008611 * A008613 A008614 A008615


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



