login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035454
Number of partitions of n into parts 8k+2 or 8k+3.
1
0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 13, 16, 16, 19, 20, 23, 25, 29, 30, 35, 37, 41, 44, 50, 53, 60, 64, 72, 76, 85, 90, 100, 107, 118, 126, 140, 148, 163, 174, 190, 203, 223, 237, 260, 277, 301, 321, 349, 371, 403, 430, 466, 496, 537
OFFSET
1,6
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(1/4) * Gamma(3/8) / (8 * 2^(5/16) * 3^(1/16) * Pi^(11/8) * n^(9/16)). - Vaclav Kotesovec, Aug 26 2015
G.f.: Product_{k>=0} 1/((1-x^(8*k+2))*(1-x^(8*k+3))). - Robert Israel, Dec 11 2018
MAPLE
nmax:= 100:
g:= mul(1/(1-x^(8*k+2))/(1-x^(8*k+3)), k=0..(nmax-2)/8):
S:= series(g, x, nmax+1):
seq(coeff(S, x, j), j=1..nmax); # Robert Israel, Dec 11 2018
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+2))*(1 - x^(8k+3))), {k, 0, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 26 2015 *)
nmax = 60; kmax = nmax/8;
s = Flatten[{Range[0, kmax]*8 + 2}~Join~{Range[0, kmax]*8 + 3}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* Robert Price, Aug 03 2020 *)
CROSSREFS
Cf. A035685.
Sequence in context: A242745 A285578 A029168 * A161228 A214130 A029172
KEYWORD
nonn
STATUS
approved