login
A214130
Partitions of n into parts congruent to +-2, +-3 (mod 13).
3
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 9, 9, 11, 12, 14, 15, 18, 19, 23, 24, 28, 30, 35, 37, 43, 46, 52, 56, 64, 68, 77, 84, 93, 101, 113, 121, 135, 146, 161, 174, 193, 207, 229, 247, 272, 292, 322, 346, 379, 408, 446, 479, 524, 562, 613, 659
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^13)^2 / (f(-x^2, -x^11) * f(-x^3, -x^10)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 2)) * (1 - x^(13*k - 3)) * (1 - x^(13*k - 10)) * (1 - x^(13*k - 11))).
A214129(n) = a(n) + A214131(n-1).
EXAMPLE
1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
q^-1 + q^11 + q^17 + q^23 + q^29 + 2*q^35 + q^41 + 2*q^47 + 2*q^53 + ...
MAPLE
with (numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(irem(d, 13) in [2, 3, 10, 11], d, 0),
d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q^2, q^13] QPochhammer[ q^3, q^13] QPochhammer[ q^10, q^13] QPochhammer[ q^11, q^13]), {q, 0, n}]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[MemberQ[{2, 3, 10, 11}, Mod[d, 13]], d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}
CROSSREFS
Sequence in context: A029168 A035454 A161228 * A029172 A240864 A241322
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 04 2012
STATUS
approved