login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240864
Number of partitions of n into distinct parts of which the number of even parts and the number of odd parts are parts.
7
0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 3, 4, 5, 6, 8, 8, 11, 10, 17, 15, 23, 19, 32, 26, 42, 35, 57, 49, 73, 66, 95, 90, 119, 121, 153, 161, 191, 214, 239, 280, 298, 365, 373, 470, 462, 603, 576, 763, 714, 963, 889, 1205, 1102, 1502, 1371, 1857, 1696, 2289
OFFSET
0,8
EXAMPLE
a(15) counts these 6 partitions: {14,1}, {12,2,1}, {9,3,2,1}, {7,4,3,1}, {6,5,3,1}, {5,4,3,2,1}.
MATHEMATICA
z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)
t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)
t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)
t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)
t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)
t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)
t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *)
CROSSREFS
Cf. A240862, A240863, A240865, A240866, A240867, A240868; for analogous sequences for unrestricted partitions, see A240573-A240579.
Sequence in context: A161228 A214130 A029172 * A241322 A275380 A161052
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2014
STATUS
approved