login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240867
Number of partitions of n into distinct parts of which the number of odd parts is a part and the number of even parts is not a part.
7
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 3, 2, 5, 2, 7, 4, 12, 5, 16, 8, 23, 11, 32, 17, 43, 25, 56, 36, 73, 51, 93, 74, 118, 102, 150, 140, 188, 191, 236, 255, 294, 337, 369, 442, 458, 570, 574, 732, 716, 930, 894, 1174, 1113, 1467, 1389, 1830, 1727, 2259
OFFSET
0,12
EXAMPLE
a(13) counts these 3 partitions: 931, 841, 6421.
MATHEMATICA
z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)
t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)
t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)
t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)
t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)
t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)
t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *)
CROSSREFS
Cf. A240862, A240863, A240864, A240865, A240866, A240868; for analogous sequences for unrestricted partitions, see A240573-A240579.
Sequence in context: A111079 A165006 A134735 * A242363 A050360 A175003
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2014
STATUS
approved