login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109694
Decimal expansion of Sum_{n>=1} 1/sigma_2(n).
2
1, 5, 3, 7, 8, 1, 2, 8, 9, 1, 8, 2, 7, 2, 5, 6, 1, 6, 2, 5, 3, 8, 6, 6, 1, 0, 0, 2, 7, 3, 8, 2, 6, 8, 3, 3, 0, 9, 1, 9, 3, 6, 0, 0, 4, 9, 4, 7, 3, 2, 2, 3, 5, 4, 9, 2, 9, 6, 1, 7, 6, 8, 9, 6, 5, 9, 4, 2, 6, 3, 3, 0, 4, 4, 5, 3, 1, 0, 4, 1, 0, 2, 3, 9, 5, 0, 1, 5, 5, 6, 7, 6, 0, 5, 3, 2, 3, 5, 9, 4, 8, 9, 1, 6, 0
OFFSET
1,2
FORMULA
Product_p Sum_{k>=0} 1/sigma_2(p^k).
EXAMPLE
1.5378128918272561625386610027382683309193600494732235492961768965942633...
MATHEMATICA
$MaxExtraPrecision = 1000; Do[Clear[f]; f[p_] := (1 + Sum[(p^2 - 1)/(p^(2*e + 2) - 1), {e, 1, emax}]); m = 1000; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2]*Exp[N[Sum[cc[[n]] * (PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {emax, 100, 400, 100}] (* Vaclav Kotesovec, Sep 19 2020 *)
PROG
(PARI) N=10^9; prodeuler(p=2, N, sum(k=1, 200/log(p), if(k==1, 1., 1./((p^(2*k)-1)/(p^2-1))))) \\ The output is 1.537812891756...
CROSSREFS
Cf. A001157 (sigma_2), A064602.
Sequence in context: A021190 A186905 A366345 * A259068 A219336 A280235
KEYWORD
cons,nonn
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Sep 19 2020
STATUS
approved