login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling transform of Catalan numbers: Sum_{k=0..n} |Stirling1(n,k)|*C(2*k,k)/(k+1).
5

%I #13 Mar 02 2014 08:39:40

%S 1,1,3,13,72,481,3745,33209,329868,3624270,43608474,570008803,

%T 8039735704,121673027607,1966231022067,33786076421499,615043147866660,

%U 11822938288619344,239298079351004608,5086498410027323134,113278368771499790136,2637549737582063583274,64082443707327038140602,1621782672366231029685407

%N Stirling transform of Catalan numbers: Sum_{k=0..n} |Stirling1(n,k)|*C(2*k,k)/(k+1).

%H Vaclav Kotesovec, <a href="/A086662/b086662.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: hypergeom([1/2], [2], -4*log(1-x)) = 1/(1-x)^2*(BesselI(0, 2*log(1-x))+BesselI(1, 2*log(1-x))).

%F a(n)=(1/(2*pi))*int(product(x+k,k,0,n-1)*sqrt((4-x)/x),x,0,4) (moment representation). [_Paul Barry_, Jul 26 2010]

%t CoefficientList[Series[(BesselI[0, 2*Log[1-x]] + BesselI[1, 2*Log[1-x]]) / (1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Mar 02 2014 *)

%t Table[Sum[Abs[StirlingS1[n,k]]*Binomial[2*k,k]/(k+1),{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Mar 02 2014 *)

%o (PARI) a(n)=sum(k=0,n, abs(stirling(n,k,1)) * binomial(2*k,k)/(k+1) ); \\ _Joerg Arndt_, Mar 02 2014

%Y Cf. A000108, A008275, A064856.

%K easy,nonn

%O 0,3

%A _Vladeta Jovovic_, Sep 12 2003