login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222059
a(n) = n-th harmonic-exponential number, multiplied by n!.
2
0, 1, 5, 44, 590, 11094, 276924, 8821056, 347992560, 16608856176, 941180477760, 62356907861280, 4768658639919360, 416372600735314560, 41123273761815517440, 4557176483095745510400, 562635159090115071744000, 76906191809174747446425600, 11573912988161070649533849600
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A008277(n,k) * (A001008(k)/A002805(k)) * A000142(n). - Michel Marcus, Feb 08 2013
Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * (exp(x) - 1)^n / n!, where H(n) is the n-th harmonic number. - Ilya Gutkovskiy, Jun 03 2022
MATHEMATICA
Table[Sum[HarmonicNumber[k] StirlingS2[n, k] n!, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
PROG
(PARI) a(n) = sum(k=0, n, (sum(i=0, k, (-1)^i*binomial(k, i)*i^n) * (-1)^k/k!)*sum(i=1, k, 1/i) * n!); \\ Michel Marcus, Feb 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 08 2013
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
STATUS
approved