The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222056 Decimal expansion of (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2. 4
2, 7, 4, 9, 3, 3, 4, 6, 3, 3, 8, 6, 5, 2, 5, 5, 8, 8, 9, 1, 7, 5, 3, 8, 7, 3, 8, 7, 2, 2, 6, 7, 9, 3, 5, 6, 9, 0, 9, 8, 1, 6, 4, 6, 1, 9, 7, 5, 8, 6, 2, 3, 5, 1, 7, 8, 9, 8, 6, 0, 3, 4, 4, 7, 3, 6, 2, 4, 1, 6, 3, 1, 7, 2, 0, 3, 1, 7, 5, 7, 6, 9, 4, 1, 5, 6, 1, 2, 7, 3, 8, 3, 2, 1, 8, 7, 1, 2, 2, 4, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
This is the probability that the gcd of any two integers is prime. - David Cushing, Mar 27 2013
The asymptotic density of integers whose largest square divisor is a square of a prime (A082293). - Amiram Eldar, Jul 07 2020
LINKS
EXAMPLE
0.27493346338652558891753873872267935690981646197586235178986...
MATHEMATICA
Drop[Flatten[RealDigits[N[PrimeZetaP[2] 6/Pi^2, 100]]], -1] (* Geoffrey Critzer, Jan 17 2015 *)
PROG
(PARI) eps()=2.>>bitprecision(1.)
primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
primezeta(2)*6/Pi^2 \\ Charles R Greathouse IV, Jul 30 2016
(PARI) sumeulerrat(1/p, 2)/zeta(2) \\ Amiram Eldar, Mar 18 2021
CROSSREFS
Sequence in context: A011050 A198935 A019779 * A247448 A329064 A102514
KEYWORD
nonn,cons,nice
AUTHOR
N. J. A. Sloane, Feb 06 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 04:44 EDT 2024. Contains 372703 sequences. (Running on oeis4.)