login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).
9

%I #34 Jun 27 2022 08:36:38

%S 1,1,5,44,566,9674,207166,5343456,161405016,5591409720,218592034584,

%T 9521490534720,457329182411856,24014921905589328,1368772939062117936,

%U 84161443919543331840,5553011951023694408064,391360838810043628416384,29342876851060951124158848

%N Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).

%C Previous name was: A simple grammar.

%H Seiichi Manyama, <a href="/A052803/b052803.txt">Table of n, a(n) for n = 0..360</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=762">Encyclopedia of Combinatorial Structures 762</a>

%F E.g.f.: (1/2)/log(-1/(-1+x))*(1-(1-4*log(-1/(-1+x)))^(1/2)).

%F a(n) ~ 2*sqrt(2) * n^(n-1) / (exp(3*n/4) * (exp(1/4)-1)^(n-1/2)). - _Vaclav Kotesovec_, Sep 30 2013

%F a(n) = Sum_{k=0..n} (2k)!/(k+1)! * |Stirling1(n,k)|. - _Michael D. Weiner_, Dec 23 2014

%F E.g.f.: 1/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + ...))))), a continued fraction. - _Ilya Gutkovskiy_, Nov 19 2017

%p spec := [S,{C=Cycle(Z),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t CoefficientList[Series[-1/(2*Log[1-x]) * (1-(1+4*Log[1-x])^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Sep 30 2013 *)

%Y Cf. A006531, A086662, A087152.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E New name using e.g.f., _Vaclav Kotesovec_, Sep 30 2013