login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052804
A simple grammar: cycles of rooted cycles.
4
0, 0, 2, 3, 20, 90, 714, 5460, 54704, 580608, 7214040, 96932880, 1452396912, 23507621280, 414102201408, 7827185489760, 158757800613120, 3429996441661440, 78775916315263488, 1914627403408320000, 49126748261368331520, 1326584986873331189760
OFFSET
0,3
FORMULA
E.g.f.: log(-1/(-1+log(-1/(-1+x))*x)).
E.g.f.: -log(1 + x*log(1-x)). - Arkadiusz Wesolowski, Feb 21 2013
a(n) ~ (n-1)! * r^n, where r = 1.349976485401125... is the root of the equation (r-1)*exp(r) = r. - Vaclav Kotesovec, Oct 01 2013
a(n) = n! * Sum_{k=1..floor(n/2)}(k-1)! * |Stirling1(n-k,k)|/(n-k)!. - Seiichi Manyama, Dec 13 2023
MAPLE
spec := [S, {B=Prod(C, Z), C=Cycle(Z), S=Cycle(B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
nn = 25; Range[0, nn]! CoefficientList[Series[Log[-1/(-1 + Log[-1/(-1 + x)]*x)], {x, 0, nn}], x] (* T. D. Noe, Feb 21 2013 *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
egf = -log(1 + x*log(1-x)) + 'c0;
gf = serlaplace(egf);
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Feb 21 2013 */
CROSSREFS
Sequence in context: A348311 A066166 A007113 * A267652 A258089 A165960
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved