%I #30 Jul 14 2023 15:20:40
%S 1,0,7,90,1129,14976,255199,4849770,111546337,3234846488,100280244907,
%T 3710369067210,152125131763369,6541380665834736,307444891294245379,
%U 16294579238595021986,961380175077106319097,58644190679703485491136,3929160775540133527938979
%N a(n) = (product of the first n odd primes) - (sum of the first n odd primes).
%C The parity of a(n) is the opposite of the parity of n.
%H Robert Israel, <a href="/A355591/b355591.txt">Table of n, a(n) for n = 0..348</a>
%F a(n) = A070826(n+1) - A071148(n).
%e a(4) = (3*5*7*11) - (3+5+7+11) = 1129.
%p a:= n-> (l-> mul(i,i=l)-add(i,i=l))([ithprime(i)$i=2..n+1]):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 12 2022
%t FoldList[Times, 1, p = Prime[Range[2, 20]]] - Prepend[Accumulate[p], 0] (* _Amiram Eldar_, Jul 14 2022 *)
%o (Python)
%o from itertools import count, islice
%o from sympy import nextprime
%o def agen():
%o p, s, primen = 1, 0, 2
%o while True:
%o yield p - s; primen = nextprime(primen); p *= primen; s += primen
%o print(list(islice(agen(), 19))) # _Michael S. Branicky_, Jul 12 2022
%o (PARI) a(n) = my(vp=primes(n+1)); vecprod(vp)/2 - vecsum(vp) + 2; \\ _Michel Marcus_, Jul 12 2022
%Y Cf. A000040, A059841, A070826, A071148, A355590.
%K nonn
%O 0,3
%A _Des MacHale_ and _Bernard Schott_, Jul 12 2022
%E More terms from _Michael S. Branicky_, Jul 12 2022