login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355593
a(n) is the number of alternating integers that divide n.
6
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 1, 6, 1, 4, 3, 5, 1, 6, 1, 5, 4, 2, 2, 7, 3, 2, 4, 5, 2, 7, 1, 6, 2, 3, 3, 9, 1, 3, 2, 6, 2, 7, 2, 3, 5, 3, 2, 8, 3, 6, 2, 4, 1, 8, 2, 7, 2, 4, 1, 9, 2, 2, 6, 6, 3, 4, 2, 4, 4, 7, 1, 11, 1, 3, 4, 5, 2, 5, 1, 7, 5, 3, 2, 9, 3, 3, 4, 4, 2, 11, 2, 5, 2, 4, 2, 10, 1, 6, 3, 7
OFFSET
1,2
COMMENTS
This sequence first differs from A355302 at index 13, where a(13) = 1 while A355302(13) = 2.
This sequence first differs from A332268 at index 14, where a(14) = 4 while A332268(14) = 3.
LINKS
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A030141(n) = 5.1... (the sums up to 10^10, 10^11 and 10^12 are 5.1704..., 5.1727... and 5.1738..., respectively). - Amiram Eldar, Jan 06 2024
EXAMPLE
40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 2 are not alternating integers: {20, 40}, hence a(40) = 8 - 2 = 6.
MAPLE
Alt:= [$1..9, seq(seq(10*i+r - (i mod 2), r=[1, 3, 5, 7, 9]), i=1..9)]:
V:= Vector(100):
for t in Alt do J:= [seq(i, i=t..100, t)]; V[J]:= V[J] +~ 1 od:
convert(V, list); # Robert Israel, Nov 26 2023
MATHEMATICA
q[n_] := !MemberQ[Differences[Mod[IntegerDigits[n], 2]], 0]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 120] (* Amiram Eldar, Jul 08 2022 *)
PROG
(Python)
from sympy import divisors
def p(d): return 0 if d in "02468" else 1
def c(n):
if n < 10: return True
s = str(n)
return all(p(s[i]) != p(s[i+1]) for i in range(len(s)-1))
def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 08 2022
(PARI) alternate(n, d=digits(n))=for(i=2, #d, if((d[i]-d[i-1])%2==0, return(0))); 1
a(n)=sumdiv(n, d, alternate(d)) \\ Charles R Greathouse IV, Jul 08 2022
CROSSREFS
Cf. A030141 (alternating integers), A355594, A355595, A355596.
Similar to A332268 (with Niven numbers) and A355302 (with undulating integers).
Sequence in context: A358099 A095048 A332268 * A355302 A084302 A289872
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 08 2022
STATUS
approved