login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of integer partitions of n with exactly k distinct primes.
2

%I #16 Feb 28 2022 10:03:41

%S 1,1,1,1,1,2,2,3,2,4,1,3,7,1,3,9,3,5,12,5,6,15,9,8,22,11,1,8,28,19,1,

%T 12,38,24,3,13,46,38,4,17,62,48,8,19,77,68,12,26,98,87,20,28,117,127,

%U 24,1,37,152,154,41,1,40,183,210,55,2,52,230,260,82,3

%N Number T(n,k) of integer partitions of n with exactly k distinct primes.

%C Row lengths increase by 1 at row A007504(n).

%C Columns k=0-1 give: A002095, A132381.

%C Row sums give: A000041.

%H Alois P. Heinz, <a href="/A274517/b274517.txt">Rows n = 0..1000, flattened</a>

%F G.f.: Product_{k>=1} (1 - x^prime(k))/(1 - x^k)*(y/(1-x^prime(k)) - y + 1).

%e T(6,1) = 7 because we have: 5+1, 4+2, 3+3, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1+1.

%e Triangle T(n,k) begins:

%e 1;

%e 1;

%e 1, 1;

%e 1, 2;

%e 2, 3;

%e 2, 4, 1;

%e 3, 7, 1;

%e 3, 9, 3;

%e 5, 12, 5;

%e 6, 15, 9;

%e 8, 22, 11, 1;

%e ...

%p b:= proc(n, i) option remember; expand(

%p `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*

%p `if`(j>0 and isprime(i), x, 1), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):

%p seq(T(n), n=0..30); # _Alois P. Heinz_, Jun 26 2016

%t nn = 20; Map[Select[#, # > 0 &] &, CoefficientList[Series[Product[

%t 1/(1 - z^k), {k,Select[Range[1000], PrimeQ[#] == False &]}] Product[

%t u/(1 - z^j) - u + 1, {j, Table[Prime[n], {n, 1, nn}]}], {z, 0,

%t nn}], {z, u}]] // Grid

%Y Cf. A000041, A002095, A007504, A132381, A222656.

%K nonn,tabf

%O 0,6

%A _Geoffrey Critzer_, Jun 25 2016