login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).
3

%I #9 Jul 26 2016 20:49:14

%S 0,2,4,20,64,248,880,3248,11776,43040,156736,571712,2083840,7597952,

%T 27698944,100985600,368164864,1342243328,4893475840,17840411648,

%U 65041678336,237125826560,864501723136,3151758405632,11490527150080,41891604733952,152726372368384

%N a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).

%C Number of zeros in substitution system {0 -> 111, 1 -> 1001} at step n from initial string "1" (see example).

%H Ilya Gutkovskiy, <a href="/A274520/a274520.pdf">Illustration (substitution system {0 -> 111, 1 -> 1001})</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SubstitutionSystem.html">Substitution System</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,6)

%F O.g.f.: 2*x/(1 - 2*x - 6*x^2).

%F E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).

%F Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.

%F a(n) = 2*a(n-1) + 6*a(n-2).

%F a(n) = 2*A083099(n).

%F Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.

%e Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ...

%e Therefore, number of zeros at step n:

%e a(0) = 0;

%e a(1) = 2;

%e a(2) = 4;

%e a(3) = 20, etc.

%t LinearRecurrence[{2, 6}, {0, 2}, 27]

%o (PARI) a(n)=([0,1; 6,2]^n*[0;2])[1,1] \\ _Charles R Greathouse IV_, Jul 26 2016

%Y Cf. A010465, A083099.

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Jun 26 2016