login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147855 G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. 5
1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k=0..n} C(k, n-k) * C(4*n-k, k).

a(n) = Sum_{k=0..n} C(n+k, n-k) * C(3*n-k, k).

a(n) = Sum_{k=0..n} C(2*n+k, n-k) * C(2*n-k, k).

a(n) = Sum_{k=0..n} C(3*n+k, n-k) * C(n-k, k).

a(n) = Sum_{k=0..n} C(4*n+k, n-k) * C(-k, k).

G.f.: 1 / (1 - 3*x*G(x)^2 - 7*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

a(n) ~ 2^(8*n+5/2)/(5*sqrt(Pi*n)*3^(3*n+1/2)). - Vaclav Kotesovec, Jun 16 2013

EXAMPLE

G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...

A related series is G(x) = 1 + x*G(x)^4, where

G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...

G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...

G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...

such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).

MATHEMATICA

Table[Sum[Binomial[2*n+k, n-k]*Binomial[2*n-k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 16 2013 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A226733, A226761, A226705, A183160, A002293.

Sequence in context: A074576 A077244 A138899 * A278333 A132595 A065204

Adjacent sequences:  A147852 A147853 A147854 * A147856 A147857 A147858

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:46 EST 2019. Contains 329853 sequences. (Running on oeis4.)