The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226761 G.f.: 1 / (1 + 12*x*G(x)^2 - 13*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. 3
 1, 1, 16, 118, 1004, 8601, 75076, 662796, 5903676, 52949332, 477533356, 4326309406, 39343725716, 358943047438, 3283745710968, 30112624408488, 276715616909148, 2547523969430508, 23491659440021920, 216942761366305144, 2006084011596742384, 18572529488934397689 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k). a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k). a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k). a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k). a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k). G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013 EXAMPLE G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +... A related series is G(x) = 1 + x*G(x)^4, where G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +... G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +... G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +... such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3). MATHEMATICA Table[Sum[Binomial[2*n+3*k, n-k]*Binomial[2*n-3*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 17 2013 *) PROG (PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A147855, A226733, A002293. Sequence in context: A302897 A145216 A200173 * A250169 A210428 A283037 Adjacent sequences: A226758 A226759 A226760 * A226762 A226763 A226764 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 19:16 EST 2024. Contains 370443 sequences. (Running on oeis4.)