login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226758
E.g.f.: A(x) = x + sin(A(x)^2).
3
1, 2, 12, 120, 1680, 30120, 658560, 16994880, 505612800, 17037851040, 641393786880, 26678131159680, 1215016298496000, 60135628841608320, 3213908573331456000, 184463573184501811200, 11316253482729190195200, 738934748606732911833600, 51171600229826941786521600
OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion(x - sin(x^2)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) sin(x^2)^n/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1/x)*sin(x^2)^n/n! ).
a(n) ~ n^(n-1) * sqrt(r/(1/s - 4*s^2*(s-r))) / (exp(n) * r^n), where s = 0.5186522338890123015... is the root of the equation 2*s*cos(s^2) = 1, and r = s - sin(s^2) = 0.2528845666082260013... - Vaclav Kotesovec, Jan 23 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/4! +...
where A(x - sin(x^2)) = x and A(x) = x + sin(A(x)^2).
Series expansions:
A(x) = x + sin(x^2) + d/dx sin(x^2)^2/2! + d^2/dx^2 sin(x^2)^3/3! + d^3/dx^3 sin(x^2)^4/4! +...
log(A(x)/x) = sin(x^2)/x + d/dx (sin(x^2)^2/x)/2! + d^2/dx^2 (sin(x^2)^3/x)/3! + d^3/dx^3 (sin(x^2)^4/x)/4! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - Sin[x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x-sin(x^2+x^2*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sin(x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sin(x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2013
STATUS
approved