OFFSET
1,1
COMMENTS
The smaller prime factor of a(n) = p = sopf(a(n))/3 + 1. The larger prime factor of a(n) = q = 2*sopf(a(n))/3 - 1. Furthermore, 2(sopf(a(n))/3 + 1) is representable as the sum of two primes in at least two ways since 2p = p + p = 3 + q. - Wesley Ivan Hurt, Jun 30 2013
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
fa = FactorInteger; t[n_]:=Length[fa[n]] == 2 && fa[n][[1, 2]]== fa[n][[2, 2]] == 1 && 2 fa[n][[1, 1]]-3 == fa[n][[2, 1]]; Select[1+Range[200000], t]
PROG
(PARI) list(lim)=my(v=List(), q); forprime(p=2, (sqrt(8*lim+9)+3)\4, if(isprime(q=2*p-3), listput(v, p*q))); Vec(v) \\ Charles R Greathouse IV, Nov 19 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
José María Grau Ribas, Jun 16 2013
EXTENSIONS
a(1) added by Charles R Greathouse IV, Nov 19 2013
STATUS
approved