Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 20 2013 14:28:49
%S 9,35,77,209,299,527,989,1829,2627,3239,3569,5459,8777,9869,13529,
%T 18527,20099,22577,25199,31877,37127,48827,55277,64979,72389,73919,
%U 88409,98789,107879,115439,125249,137549,159329,192509,200027,218129,239777,277139,353219
%N Numbers of the form p*q, p and q prime with q=2p-3.
%C The smaller prime factor of a(n) = p = sopf(a(n))/3 + 1. The larger prime factor of a(n) = q = 2*sopf(a(n))/3 - 1. Furthermore, 2(sopf(a(n))/3 + 1) is representable as the sum of two primes in at least two ways since 2p = p + p = 3 + q. - _Wesley Ivan Hurt_, Jun 30 2013
%H Charles R Greathouse IV, <a href="/A226755/b226755.txt">Table of n, a(n) for n = 1..10000</a>
%t fa = FactorInteger; t[n_]:=Length[fa[n]] == 2 && fa[n][[1,2]]== fa[n][[2, 2]] == 1 && 2 fa[n][[1, 1]]-3 == fa[n][[2, 1]]; Select[1+Range[200000], t]
%o (PARI) list(lim)=my(v=List(), q); forprime(p=2, (sqrt(8*lim+9)+3)\4, if(isprime(q=2*p-3), listput(v, p*q))); Vec(v) \\ _Charles R Greathouse IV_, Nov 19 2013
%Y Cf. A129521, A156592, A226754.
%K nonn
%O 1,1
%A _José María Grau Ribas_, Jun 16 2013
%E a(1) added by _Charles R Greathouse IV_, Nov 19 2013