The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214770 E.g.f. satisfies: A(x) = x + sin(A(x))*sinh(A(x)). 1
 1, 2, 12, 120, 1680, 30232, 664832, 17277120, 518031360, 17602865312, 668505311232, 28059791760000, 1289932186583040, 64455076284318592, 3478305412257677312, 201608948937441269760, 12491465252403224248320, 823886511479340063068672, 57633367371058675735068672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..19. FORMULA E.g.f. satisfies: (1) A(x) = Series_Reversion(x - sin(x)*sinh(x)). (2) A(x) = x + Sum_{n>=1} (-1)^(n-1)*2^(2*n-1) * A(x)^(4*n-2)/(4*n-2)!. (3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) sin(x)^n*sinh(x)^n / n!. (4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) sin(x)^n*sinh(x)^n/x / n! ). a(n) ~ n^(n-1) / (exp(n) * r^(n-1/2) * sqrt(2*cos(s)*cosh(s))), where s = 0.50105258964301589... is the root of the equation cosh(s)*sin(s) + cos(s)*sinh(s) = 1, and r = s - sin(s)*sinh(s) = 0.25017469884019539.... - Vaclav Kotesovec, Jan 13 2014 EXAMPLE E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/5! + 30232*x^6/6! +... where A(x - sin(x)*sinh(x)) = x and A(x) = x + sin(A(x))*sinh(A(x)). Related expansions: sin(x)*sinh(x) = 2*x^2/2! - 8*x^6/6! + 32*x^10/10! - 128*x^14/14! + 512*x^18/18! -+...+ (-1)^(n-1)*2^(2*n-1)*x^(4*n-2)/(4*n-2)! +-... sin(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 108*x^4/4! + 1501*x^5/5! + 26902*x^6/6! +... sinh(A(x)) = x + 2*x^2/2! + 13*x^3/3! + 132*x^4/4! + 1861*x^5/5! + 33622*x^6/6! +... Other series: A(x) = x + sin(x)*sinh(x) + d/dx sin(x)^2*sinh(x)^2/2! + d^2/dx^2 sin(x)^3*sinh(x)^3/3! + d^3/dx^3 sin(x)^4*sinh(x)^4/4! +... log(A(x)/x) = sin(x)*sinh(x)/x + d/dx sin(x)^2*sinh(x)^2/x/2! + d^2/dx^2 sin(x)^3*sinh(x)^3/x/3! + d^3/dx^3 sin(x)^4*sinh(x)^4/x/4! +... MATHEMATICA Rest[CoefficientList[InverseSeries[Series[x - Sin[x]*Sinh[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *) PROG (PARI) {a(n)=n!*polcoeff(serreverse(x-sin(x+x*O(x^n))*sinh(x+x*O(x^n))), n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^m*sinh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)} (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^m*sinh(x+x*O(x^n))^m/x/m!))); n!*polcoeff(A, n)} CROSSREFS Cf. A143134. Sequence in context: A096317 A226760 A226758 * A081470 A108135 A097388 Adjacent sequences: A214767 A214768 A214769 * A214771 A214772 A214773 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 31 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 19:52 EST 2023. Contains 367614 sequences. (Running on oeis4.)