The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226760 E.g.f.: A(x) = x + tanh(A(x)^2). 3
 1, 2, 12, 120, 1680, 30000, 651840, 16692480, 492307200, 16432899840, 612414190080, 25205181281280, 1135434972672000, 55567263749437440, 2935699697464934400, 166525788640142131200, 10094443872515806003200, 651211844046521735577600, 44547029929095149430374400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..19. FORMULA E.g.f.: Series_Reversion(x - tanh(x^2)). E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) tanh(x^2)^n/n!. E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1/x)*tanh(x^2)^n/n! ). a(n) ~ n^(n-1) * sqrt(r*s/(1 - 4*s^2*(s-r))) / (exp(n) * r^n), where s = 0.5456469378931069437... is the root of the equation 2*s = cosh(s^2)^2, and r = s - tanh(s^2) = 0.2564125251556591672... - Vaclav Kotesovec, Jan 23 2014 EXAMPLE E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/4! +... where A(x - tanh(x^2)) = x and A(x) = x + tanh(A(x)^2). Series expansions: A(x) = x + tanh(x^2) + d/dx tanh(x^2)^2/2! + d^2/dx^2 tanh(x^2)^3/3! + d^3/dx^3 tanh(x^2)^4/4! +... log(A(x)/x) = tanh(x^2)/x + d/dx (tanh(x^2)^2/x)/2! + d^2/dx^2 (tanh(x^2)^3/x)/3! + d^3/dx^3 (tanh(x^2)^4/x)/4! +... MATHEMATICA Rest[CoefficientList[InverseSeries[Series[x - Tanh[x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *) PROG (PARI) {a(n)=n!*polcoeff(serreverse(x-tanh(x^2+x^2*O(x^n))), n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A226759, A215188, A226758. Sequence in context: A245067 A052680 A096317 * A226758 A214770 A081470 Adjacent sequences: A226757 A226758 A226759 * A226761 A226762 A226763 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 08:19 EST 2023. Contains 367557 sequences. (Running on oeis4.)