login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226760
E.g.f.: A(x) = x + tanh(A(x)^2).
3
1, 2, 12, 120, 1680, 30000, 651840, 16692480, 492307200, 16432899840, 612414190080, 25205181281280, 1135434972672000, 55567263749437440, 2935699697464934400, 166525788640142131200, 10094443872515806003200, 651211844046521735577600, 44547029929095149430374400
OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion(x - tanh(x^2)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) tanh(x^2)^n/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1/x)*tanh(x^2)^n/n! ).
a(n) ~ n^(n-1) * sqrt(r*s/(1 - 4*s^2*(s-r))) / (exp(n) * r^n), where s = 0.5456469378931069437... is the root of the equation 2*s = cosh(s^2)^2, and r = s - tanh(s^2) = 0.2564125251556591672... - Vaclav Kotesovec, Jan 23 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/4! +...
where A(x - tanh(x^2)) = x and A(x) = x + tanh(A(x)^2).
Series expansions:
A(x) = x + tanh(x^2) + d/dx tanh(x^2)^2/2! + d^2/dx^2 tanh(x^2)^3/3! + d^3/dx^3 tanh(x^2)^4/4! +...
log(A(x)/x) = tanh(x^2)/x + d/dx (tanh(x^2)^2/x)/2! + d^2/dx^2 (tanh(x^2)^3/x)/3! + d^3/dx^3 (tanh(x^2)^4/x)/4! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - Tanh[x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x-tanh(x^2+x^2*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2013
STATUS
approved