

A226763


Greatest k such that 1/k >= mean{1, 1/2, 1/3,..., 1/n}.


2



1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000


FORMULA

a(n) = ceiling(n/{sum{1/k, k = 1..n}).


EXAMPLE

1/3 < mean{1,1/2,1/3,...,1/9} < 1/4, so that a(9) = 4.


MATHEMATICA

f[n_] := Mean[Table[1/k, {k, 1, n}]]
Table[Floor[1/f[n]], {n, 1, 120}] (* A226762 *)
Table[Ceiling[1/f[n]], {n, 1, 120}] (* A226763 *)


CROSSREFS

Cf. A226762.
Sequence in context: A087834 A172263 A140437 * A050500 A076885 A274024
Adjacent sequences: A226760 A226761 A226762 * A226764 A226765 A226766


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Jun 19 2013


STATUS

approved



