Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jan 23 2014 10:05:36
%S 1,2,12,120,1680,30000,651840,16692480,492307200,16432899840,
%T 612414190080,25205181281280,1135434972672000,55567263749437440,
%U 2935699697464934400,166525788640142131200,10094443872515806003200,651211844046521735577600,44547029929095149430374400
%N E.g.f.: A(x) = x + tanh(A(x)^2).
%F E.g.f.: Series_Reversion(x - tanh(x^2)).
%F E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) tanh(x^2)^n/n!.
%F E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1/x)*tanh(x^2)^n/n! ).
%F a(n) ~ n^(n-1) * sqrt(r*s/(1 - 4*s^2*(s-r))) / (exp(n) * r^n), where s = 0.5456469378931069437... is the root of the equation 2*s = cosh(s^2)^2, and r = s - tanh(s^2) = 0.2564125251556591672... - _Vaclav Kotesovec_, Jan 23 2014
%e E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/4! +...
%e where A(x - tanh(x^2)) = x and A(x) = x + tanh(A(x)^2).
%e Series expansions:
%e A(x) = x + tanh(x^2) + d/dx tanh(x^2)^2/2! + d^2/dx^2 tanh(x^2)^3/3! + d^3/dx^3 tanh(x^2)^4/4! +...
%e log(A(x)/x) = tanh(x^2)/x + d/dx (tanh(x^2)^2/x)/2! + d^2/dx^2 (tanh(x^2)^3/x)/3! + d^3/dx^3 (tanh(x^2)^4/x)/4! +...
%t Rest[CoefficientList[InverseSeries[Series[x - Tanh[x^2],{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 23 2014 *)
%o (PARI) {a(n)=n!*polcoeff(serreverse(x-tanh(x^2+x^2*O(x^n))), n)}
%o for(n=1, 25, print1(a(n), ", "))
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)}
%o for(n=1, 25, print1(a(n), ", "))
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, tanh(x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
%o for(n=1, 25, print1(a(n), ", "))
%Y Cf. A226759, A215188, A226758.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jun 16 2013