This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077244 Bisection (odd part) of Chebyshev sequence with Diophantine property. 5
 3, 22, 173, 1362, 10723, 84422, 664653, 5232802, 41197763, 324349302, 2553596653, 20104423922, 158281794723, 1246149933862, 9810917676173, 77241191475522, 608118614128003, 4787707721548502, 37693543158260013, 296760637544531602, 2336391557197992803 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077243(n). The even part is A077246(n) with Diophantine companion A077245(n). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (8,-1). FORMULA a(n)= (2*T(n+1, 4)+T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n). G.f.: (3-2*x)/(1-8*x+x^2). From Colin Barker, Oct 12 2015: (Start) a(n) = (((4-sqrt(15))^n * (-10+3*sqrt(15)) + (4+sqrt(15))^n * (10+3*sqrt(15)))) / (2*sqrt(15)). a(n) = 8*a(n-1) - a(n-2). (End) EXAMPLE 22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22. MATHEMATICA LinearRecurrence[{8, -1}, {3, 22}, 25] (* Vincenzo Librandi, Oct 12 2015 *) PROG (PARI) Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015 (MAGMA) I:=[3, 22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015 CROSSREFS Sequence in context: A074578 A290719 A074576 * A138899 A147855 A278333 Adjacent sequences:  A077241 A077242 A077243 * A077245 A077246 A077247 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 19:35 EDT 2018. Contains 312918 sequences. (Running on oeis4.)