This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077245 Bisection (even part) of Chebyshev sequence with Diophantine property. 4
 1, 10, 79, 622, 4897, 38554, 303535, 2389726, 18814273, 148124458, 1166181391, 9181326670, 72284431969, 569094129082, 4480468600687, 35274654676414, 277716768810625, 2186459495808586, 17213959197658063 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 3*b(n)^2 - 5*a(n)^2 = 7, with the companion sequence b(n)= A077246(n). The odd part is A077243(n) with Diophantine companion A077244(n). LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (8,-1). FORMULA a(n)= 8*a(n-1) - a(n-2), a(-1) := -2, a(0)=1. a(n)= S(n, 8)+2*S(n-1, 8), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) := 0 and S(n, 8)= A001090(n+1). G.f.: (1+2*x)/(1-8*x+x^2). a(n)=(1/2)*[4-sqrt(15)]^n-(1/5)*[4-sqrt(15)]^n*sqrt(15)+(1/2)*[4+sqrt(15)]^n+(1/5)*sqrt(15) *[4+sqrt(15)]^n, with n>=0 - Paolo P. Lava, Jul 08 2008 EXAMPLE 5*a(1)^2 + 7 = 5*10^2 + 7 = 507 = 3*13^2 = 3*A077246(1)^2. CROSSREFS Sequence in context: A081905 A016138 A006329 * A036732 A251309 A206764 Adjacent sequences:  A077242 A077243 A077244 * A077246 A077247 A077248 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 03:24 EDT 2019. Contains 328291 sequences. (Running on oeis4.)