login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077245
Bisection (even part) of Chebyshev sequence with Diophantine property.
4
1, 10, 79, 622, 4897, 38554, 303535, 2389726, 18814273, 148124458, 1166181391, 9181326670, 72284431969, 569094129082, 4480468600687, 35274654676414, 277716768810625, 2186459495808586, 17213959197658063
OFFSET
0,2
COMMENTS
3*b(n)^2 - 5*a(n)^2 = 7, with the companion sequence b(n)= A077246(n).
The odd part is A077243(n) with Diophantine companion A077244(n).
FORMULA
a(n)= 8*a(n-1) - a(n-2), a(-1) := -2, a(0)=1.
a(n)= S(n, 8)+2*S(n-1, 8), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) := 0 and S(n, 8)= A001090(n+1).
G.f.: (1+2*x)/(1-8*x+x^2).
EXAMPLE
5*a(1)^2 + 7 = 5*10^2 + 7 = 507 = 3*13^2 = 3*A077246(1)^2.
CROSSREFS
Sequence in context: A081905 A016138 A006329 * A036732 A251309 A377348
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved