Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 01 2024 11:05:40
%S 1,10,79,622,4897,38554,303535,2389726,18814273,148124458,1166181391,
%T 9181326670,72284431969,569094129082,4480468600687,35274654676414,
%U 277716768810625,2186459495808586,17213959197658063
%N Bisection (even part) of Chebyshev sequence with Diophantine property.
%C 3*b(n)^2 - 5*a(n)^2 = 7, with the companion sequence b(n)= A077246(n).
%C The odd part is A077243(n) with Diophantine companion A077244(n).
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1).
%F a(n)= 8*a(n-1) - a(n-2), a(-1) := -2, a(0)=1.
%F a(n)= S(n, 8)+2*S(n-1, 8), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) := 0 and S(n, 8)= A001090(n+1).
%F G.f.: (1+2*x)/(1-8*x+x^2).
%e 5*a(1)^2 + 7 = 5*10^2 + 7 = 507 = 3*13^2 = 3*A077246(1)^2.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Nov 08 2002