login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147855 G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. 5

%I

%S 1,3,22,174,1444,12323,107104,942952,8381596,75053100,676017962,

%T 6118171326,55591175956,506805088026,4633571685968,42468065811884,

%U 390071875757852,3589637747968964,33089300640166360,305476314574338648,2823932709938708824,26137341654281261347

%N G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

%H G. C. Greubel, <a href="/A147855/b147855.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{k=0..n} C(k, n-k) * C(4*n-k, k).

%F a(n) = Sum_{k=0..n} C(n+k, n-k) * C(3*n-k, k).

%F a(n) = Sum_{k=0..n} C(2*n+k, n-k) * C(2*n-k, k).

%F a(n) = Sum_{k=0..n} C(3*n+k, n-k) * C(n-k, k).

%F a(n) = Sum_{k=0..n} C(4*n+k, n-k) * C(-k, k).

%F G.f.: 1 / (1 - 3*x*G(x)^2 - 7*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

%F a(n) ~ 2^(8*n+5/2)/(5*sqrt(Pi*n)*3^(3*n+1/2)). - _Vaclav Kotesovec_, Jun 16 2013

%e G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...

%e A related series is G(x) = 1 + x*G(x)^4, where

%e G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...

%e G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...

%e G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...

%e such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).

%t Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Jun 16 2013 *)

%o (PARI) {a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A226733, A226761, A226705, A183160, A002293.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 16 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 23:05 EST 2020. Contains 331289 sequences. (Running on oeis4.)