login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159841
Triangle T(n,k) = binomial(3*n+1, 2*n+k+1), read by rows.
4
1, 4, 1, 21, 7, 1, 120, 45, 10, 1, 715, 286, 78, 13, 1, 4368, 1820, 560, 120, 16, 1, 27132, 11628, 3876, 969, 171, 19, 1, 170544, 74613, 26334, 7315, 1540, 231, 22, 1, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1, 6906900, 3108105, 1184040, 376740
OFFSET
0,2
COMMENTS
T(n,0) = A045721(n), T(2n,n) = A079590(n).
FORMULA
T(n,0) = 4*T(n-1,0) + 5*T(n-1,1) + T(n-1,2), T(n+1,k+1) = T(n,k) + 3*T(n,k+1) + 3*T(n,k+2) + T(n,k+3) for k >= 0.
EXAMPLE
Triangle begins:
1;
4, 1;
21, 7, 1;
120, 45, 10, 1;
715, 286, 78, 13, 1;
4368, 1820, 560, 120, 16, 1;
...
MATHEMATICA
f[n_, k_]:=Binomial[3n+1, 2n+k+1]; Table[ f[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Robert G. Wilson v, May 31 2009 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(3*n+1, 2*n+k+1), ", "))) \\ G. C. Greubel, May 19 2018
(Magma) /* As triangle */ [[Binomial(3*n+1, 2*n+k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 19 2018
CROSSREFS
Sequence in context: A144484 A121336 A126457 * A202550 A364760 A142472
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Apr 23 2009
EXTENSIONS
More terms from Robert G. Wilson v, May 31 2009
STATUS
approved