login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159840
Numerator of Hermite(n, 15/22).
1
1, 15, -17, -7515, -100383, 5768775, 207995055, -5256335475, -431188655295, 3708435650175, 994755425985135, 5946917116353525, -2558835187227126495, -55652375114297534025, 7215309872302076942895, 296779894971771199420125, -21739876411879971311406975
OFFSET
0,2
FORMULA
E.g.f.: exp(-x*(121*x-15)). - Simon Plouffe, Jun 22 2018
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 15/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(15/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -15*a(n-1) +242*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021
MATHEMATICA
Numerator[Table[HermiteH[n, 15/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
Table[11^n*HermiteH[n, 15/22], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 15/22)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(15/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
CROSSREFS
Cf. A159657.
Sequence in context: A157716 A113968 A093812 * A124609 A102500 A067757
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved