login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142472
Triangle T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k), read by rows.
1
1, -4, 1, 21, -18, 1, -140, 240, -48, 1, 1140, -3150, 1300, -100, 1, -11004, 43620, -29700, 4800, -180, 1, 123074, -650769, 647780, -175175, 13965, -294, 1, -1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1, 22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1
OFFSET
1,2
COMMENTS
Row sums are: 1, -3, 4, 53, -809, 7537, -41418, -294411, 15463669, -352665269, ....
FORMULA
T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k).
EXAMPLE
The triangle begins as:
1;
-4, 1;
21, -18, 1;
-140, 240, -48, 1;
1140, -3150, 1300, -100, 1;
-11004, 43620, -29700, 4800, -180, 1;
123074, -650769, 647780, -175175, 13965, -294, 1;
-1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1;
22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1;
MAPLE
A142472:= (n, k)-> binomial(n, k)*add(Stirling1(n, j)*Stirling1(j, k), j=k..n);
seq(seq(A142472(n, k), k=1..n), n=1..12); # G. C. Greubel, Apr 02 2021
MATHEMATICA
T[n_, k_]:= Binomial[n, k]*Sum[StirlingS1[n, j]*StirlingS1[j, k], {j, k, n}];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 02 2021 *)
PROG
(Magma)
A142472:= func< n, k | Binomial(n, k)*(&+[StirlingFirst(n, j)*StirlingFirst(j, k): j in [k..n]]) >;
[A142472(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 02 2021
(Sage)
def A142472(n, k): return (-1)^(n-k)*binomial(n, k)*sum( stirling_number1(n, j)*stirling_number1(j, k) for j in (k..n) )
flatten([[A142472(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 02 2021
CROSSREFS
Sequence in context: A159841 A202550 A364760 * A360089 A299445 A135049
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Sep 26 2008
STATUS
approved