login
A202550
Triangle T(n,m) = coefficient of x^n in the Taylor expansion of [(1-(1-8*x)^(1/4))/(1+(1-8*x)^(1/4))]^m.
1
1, 4, 1, 21, 8, 1, 124, 58, 12, 1, 782, 416, 111, 16, 1, 5144, 2997, 940, 180, 20, 1, 34845, 21752, 7653, 1760, 265, 24, 1, 241196, 159062, 61068, 16014, 2940, 366, 28, 1, 1697498, 1171136, 481944, 139712, 29600, 4544
OFFSET
1,2
FORMULA
n*T(n,m) = sum_{i=m..n} i*binomial(i-1,m-1)* sum_{k=0..n-i} (-1)^(n-k-i)*binomial(n+k-1,n-1) *sum_{j=0..k} binomial(j,n-3*k+2*j-i)*binomial(k,j) *2^(2*n-5*k+3*j-2*i) *3^(-n+3*k-j+i).
EXAMPLE
The coefficients start in row n=1 with 1<=m<=n as:
1,
4, 1,
21, 8, 1,
124, 58, 12, 1,
782, 416, 111, 16, 1,
5144, 2997, 940, 180, 20, 1,
34845, 21752, 7653, 1760, 265, 24, 1
MAPLE
A202550 := proc(n, m)
(1-(1-8*x)^(1/4)) /(1+(1-8*x)^(1/4)) ;
coeftayl(%^m, x=0, n) ;
end proc: # R. J. Mathar, Dec 22 2011
PROG
(Maxima) T(n, m):=sum(i*binomial(i-1, m-1)*sum((-1)^(n-k-i)*binomial(n+k-1, n-1)*sum(binomial(j, n-3*k+2*j-i)*binomial(k, j)*2^(2*n-5*k+3*j-2*i)*3^(-n+3*k-j+i), j, 0, k), k, 0, n-i), i, m, n)/n;
CROSSREFS
Cf. A101478.
Sequence in context: A121336 A126457 A159841 * A364760 A142472 A360089
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Dec 20 2011
STATUS
approved