The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202550 Triangle T(n,m) = coefficient of x^n in the Taylor expansion of [(1-(1-8*x)^(1/4))/(1+(1-8*x)^(1/4))]^m. 1
 1, 4, 1, 21, 8, 1, 124, 58, 12, 1, 782, 416, 111, 16, 1, 5144, 2997, 940, 180, 20, 1, 34845, 21752, 7653, 1760, 265, 24, 1, 241196, 159062, 61068, 16014, 2940, 366, 28, 1, 1697498, 1171136, 481944, 139712, 29600, 4544 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA n*T(n,m) = sum_{i=m..n} i*binomial(i-1,m-1)* sum_{k=0..n-i} (-1)^(n-k-i)*binomial(n+k-1,n-1) *sum_{j=0..k} binomial(j,n-3*k+2*j-i)*binomial(k,j) *2^(2*n-5*k+3*j-2*i) *3^(-n+3*k-j+i). EXAMPLE The coefficients start in row n=1 with 1<=m<=n as: 1, 4, 1, 21, 8, 1, 124, 58, 12, 1, 782, 416, 111, 16, 1, 5144, 2997, 940, 180, 20, 1, 34845, 21752, 7653, 1760, 265, 24, 1 MAPLE A202550 := proc(n, m) (1-(1-8*x)^(1/4)) /(1+(1-8*x)^(1/4)) ; coeftayl(%^m, x=0, n) ; end proc: # R. J. Mathar, Dec 22 2011 PROG (Maxima) T(n, m):=sum(i*binomial(i-1, m-1)*sum((-1)^(n-k-i)*binomial(n+k-1, n-1)*sum(binomial(j, n-3*k+2*j-i)*binomial(k, j)*2^(2*n-5*k+3*j-2*i)*3^(-n+3*k-j+i), j, 0, k), k, 0, n-i), i, m, n)/n; CROSSREFS Cf. A101478. Sequence in context: A121336 A126457 A159841 * A142472 A360089 A299445 Adjacent sequences: A202547 A202548 A202549 * A202551 A202552 A202553 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Dec 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 23:07 EST 2023. Contains 360091 sequences. (Running on oeis4.)