login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101478
G.f. satisfies A(x) = x*(1+A)^4/(1+A^2).
2
0, 1, 4, 21, 124, 782, 5144, 34845, 241196, 1697498, 12104872, 87246770, 634425752, 4647805372, 34267130928, 254035385949, 1892315106252, 14155536314786, 106288436980488, 800753707211430, 6050872882024520
OFFSET
0,3
FORMULA
G.f. (1-(1-8*x)^(1/4))/(1+(1-8*x)^(1/4))-1, a(n)=sum(m=1..n, m*sum(k=0..n-m(-1)^(n-m-k)*binomial(n+k-1,n-1)*sum(j=0..k, binomial(j,n-m-3*k+2*j)*binomial(k,j)*2^(2*n-2*m-5*k+3*j)*3^(-n+m+3*k-j))))/n, n>0, a(0)=0. - Vladimir Kruchinin, Dec 10 2011
a(n) ~ 2^(3*n-1)/(Gamma(3/4)*n^(5/4)) * (1 - 2*Gamma(3/4)/ (n^(1/4)*sqrt(Pi)) + 3*Gamma(3/4)^2/(sqrt(2*n)*Pi)). - Vaclav Kotesovec, Sep 16 2013
Conjecture: n*(n-1)*(n+1)*a(n) -12*n*(n-1)*(2*n-3)*a(n-1) +12*(n-1)*(16*n^2-64*n+65)*a(n-2) -16*(2*n-5)*(4*n-9)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Nov 10 2013
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert(series(x* (1+A(n-1))^4/ (1+A(n-1)^2), x, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..20); # Alois P. Heinz, Aug 23 2008
MATHEMATICA
a[0]=0; a[n_] := Sum[m*Sum[(-1)^(n-m-k)*Binomial[n+k-1, n-1]*Sum[Binomial[j, n-m-3*k+2*j]*Binomial[k, j]*2^(2*n-2*m-5*k+3*j)*3^(-n+m+3*k-j), {j, 0, k}], {k, 0, n-m}], {m, 1, n}]/n; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2015, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum(m*sum((-1)^(n-m-k)*binomial(n+k-1, n-1)*sum(binomial(j, n-m-3*k+2*j)*binomial(k, j)*2^(2*n-2*m-5*k+3*j)*3^(-n+m+3*k-j), j, 0, k), k, 0, n-m), m, 1, n)/n; /* Vladimir Kruchinin, Dec 10 2011 */
CROSSREFS
Sequence in context: A108404 A115136 A364866 * A153291 A244062 A093965
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 21 2005
STATUS
approved