Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 09 2015 01:04:23
%S 1,4,1,21,8,1,124,58,12,1,782,416,111,16,1,5144,2997,940,180,20,1,
%T 34845,21752,7653,1760,265,24,1,241196,159062,61068,16014,2940,366,28,
%U 1,1697498,1171136,481944,139712,29600,4544
%N Triangle T(n,m) = coefficient of x^n in the Taylor expansion of [(1-(1-8*x)^(1/4))/(1+(1-8*x)^(1/4))]^m.
%F n*T(n,m) = sum_{i=m..n} i*binomial(i-1,m-1)* sum_{k=0..n-i} (-1)^(n-k-i)*binomial(n+k-1,n-1) *sum_{j=0..k} binomial(j,n-3*k+2*j-i)*binomial(k,j) *2^(2*n-5*k+3*j-2*i) *3^(-n+3*k-j+i).
%e The coefficients start in row n=1 with 1<=m<=n as:
%e 1,
%e 4, 1,
%e 21, 8, 1,
%e 124, 58, 12, 1,
%e 782, 416, 111, 16, 1,
%e 5144, 2997, 940, 180, 20, 1,
%e 34845, 21752, 7653, 1760, 265, 24, 1
%p A202550 := proc(n,m)
%p (1-(1-8*x)^(1/4)) /(1+(1-8*x)^(1/4)) ;
%p coeftayl(%^m,x=0,n) ;
%p end proc: # _R. J. Mathar_, Dec 22 2011
%o (Maxima) T(n,m):=sum(i*binomial(i-1,m-1)*sum((-1)^(n-k-i)*binomial(n+k-1,n-1)*sum(binomial(j,n-3*k+2*j-i)*binomial(k,j)*2^(2*n-5*k+3*j-2*i)*3^(-n+3*k-j+i),j,0,k),k,0,n-i),i,m,n)/n;
%Y Cf. A101478.
%K nonn,tabl
%O 1,2
%A _Vladimir Kruchinin_, Dec 20 2011