OFFSET
1,8
COMMENTS
In general, suppose a(n)*a(n-7) = c1*a(n-1)*a(n-6) + c2*a(n-3)*a(n-4) for all n and constants c1,c2. Define u(n) = a(n)*a(n+5)/(a(n+2)*a(n+3)) which satisfies the generalized Lyness recursion u(n) = (c1*u(n-1) + c2)/u(n-2) for all n. For this sequence c1=1, c2=2, u(n) is (1, 1, 3, 5, 7/3, 13/15, 43/35, ...) and satisfies u(n) = (u(n-1) + 2)/u(n-2). See A076839 for Lyness references. - Michael Somos, Sep 26 2022
LINKS
FORMULA
a(8-n) = a(n).
MATHEMATICA
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==1, a[n] == (a[n-1]a[n-6]+2a[n-3]a[n-4])/a[n-7]}, a, {n, 30}] (* Harvey P. Dale, Nov 26 2015 *)
PROG
(PARI) {a(n) = if( n<1, a(8-n), if( n<8, 1, (a(n-1) * a(n-6) + 2 * a(n-3) * a(n-4)) / a(n-7)))};
(PARI) { a7=a6=a5=a4=a3=a2=a1=a=1; for (n=1, 100, if (n>7, a=(a1*a6 + 2*a3*a4)/a7; a7=a6; a6=a5; a5=a4; a4=a3; a3=a2; a2=a1; a1=a); write("b064268.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 10 2009
(Magma) I:=[1, 1, 1, 1, 1, 1, 1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + 2*Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 24 2001
STATUS
approved