login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064268
a(n) = (a(n-1) * a(n-6) + 2 * a(n-3) * a(n-4)) / a(n-7). a(1) = ... = a(7) = 1. Somos-7 variation.
1
1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 13, 43, 113, 521, 1241, 3681, 23657, 177721, 679505, 4674203, 27273277, 275517767, 3496390229, 37043734803, 226196947873, 4391322667601, 81041508965617, 1433151398896001, 25397505914206225, 472652420405241521, 9156799134584424289, 499597377081528480243
OFFSET
1,8
COMMENTS
In general, suppose a(n)*a(n-7) = c1*a(n-1)*a(n-6) + c2*a(n-3)*a(n-4) for all n and constants c1,c2. Define u(n) = a(n)*a(n+5)/(a(n+2)*a(n+3)) which satisfies the generalized Lyness recursion u(n) = (c1*u(n-1) + c2)/u(n-2) for all n. For this sequence c1=1, c2=2, u(n) is (1, 1, 3, 5, 7/3, 13/15, 43/35, ...) and satisfies u(n) = (u(n-1) + 2)/u(n-2). See A076839 for Lyness references. - Michael Somos, Sep 26 2022
FORMULA
a(8-n) = a(n).
MATHEMATICA
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==1, a[n] == (a[n-1]a[n-6]+2a[n-3]a[n-4])/a[n-7]}, a, {n, 30}] (* Harvey P. Dale, Nov 26 2015 *)
PROG
(PARI) {a(n) = if( n<1, a(8-n), if( n<8, 1, (a(n-1) * a(n-6) + 2 * a(n-3) * a(n-4)) / a(n-7)))};
(PARI) { a7=a6=a5=a4=a3=a2=a1=a=1; for (n=1, 100, if (n>7, a=(a1*a6 + 2*a3*a4)/a7; a7=a6; a6=a5; a5=a4; a4=a3; a3=a2; a2=a1; a1=a); write("b064268.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 10 2009
(Magma) I:=[1, 1, 1, 1, 1, 1, 1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + 2*Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
CROSSREFS
Sequence in context: A163080 A141414 A236464 * A235873 A118743 A225226
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 24 2001
STATUS
approved