login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p$ - 1 is also prime. Here '$' denotes the swinging factorial function (A056040).
3

%I #10 May 08 2020 17:43:45

%S 3,5,7,13,41,47,83,137,151,229,317,389,1063,2371,6101,7873,13007,19603

%N Primes p such that p$ - 1 is also prime. Here '$' denotes the swinging factorial function (A056040).

%C a(n) are the primes in A163078.

%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.

%H Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>

%e 3 is prime and 3$ - 1 = 5 is prime, so 3 is in the sequence.

%p a := proc(n) select(isprime,select(k -> isprime(A056040(k)-1),[$0..n])) end:

%t sf[n_] := n!/Quotient[n, 2]!^2; Select[Prime /@ Range[200], PrimeQ[sf[#] - 1] &] (* _Jean-François Alcover_, Jun 28 2013 *)

%o (PARI) is(k) = isprime(k) && ispseudoprime(k!/(k\2)!^2-1); \\ _Jinyuan Wang_, Mar 22 2020

%Y Cf. A056040, A103317, A163079, A163078.

%K nonn,more

%O 1,1

%A _Peter Luschny_, Jul 21 2009

%E a(14)-a(18) from _Jinyuan Wang_, Mar 22 2020