|
|
A236467
|
|
Primes p with p + 2 and prime(p) - 2 both prime.
|
|
6
|
|
|
3, 11, 29, 149, 179, 191, 269, 347, 431, 461, 617, 659, 1031, 1619, 1931, 3467, 3527, 4799, 6569, 6689, 7349, 7877, 9011, 9767, 11117, 12611, 13691, 13901, 14549, 16067, 16139, 16451, 16631, 17489, 17681, 18911, 20981, 22367, 23909, 24179
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
According to the conjecture in A236468, this sequence should have infinitely many terms.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 3 since 3, 3 + 2 = 5 and prime(3) - 2 = 3 are all prime, but 2 + 2 = 4 is composite.
|
|
MATHEMATICA
|
p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]-2]
n=0; Do[If[p[Prime[m]], n=n+1; Print[n, " ", Prime[m]]], {m, 1, 10000}]
Select[Prime[Range[3000]], AllTrue[{#+2, Prime[#]-2}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|