

A236467


Primes p with p + 2 and prime(p)  2 both prime.


6



3, 11, 29, 149, 179, 191, 269, 347, 431, 461, 617, 659, 1031, 1619, 1931, 3467, 3527, 4799, 6569, 6689, 7349, 7877, 9011, 9767, 11117, 12611, 13691, 13901, 14549, 16067, 16139, 16451, 16631, 17489, 17681, 18911, 20981, 22367, 23909, 24179
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

According to the conjecture in A236468, this sequence should have infinitely many terms.


LINKS



EXAMPLE

a(1) = 3 since 3, 3 + 2 = 5 and prime(3)  2 = 3 are all prime, but 2 + 2 = 4 is composite.


MATHEMATICA

p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]2]
n=0; Do[If[p[Prime[m]], n=n+1; Print[n, " ", Prime[m]]], {m, 1, 10000}]
Select[Prime[Range[3000]], AllTrue[{#+2, Prime[#]2}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2020 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



