The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236469 Primes p such that pi(p) = floor(p/10), where pi is the prime counting function. 0
 64553, 64567, 64577, 64591, 64601, 64661 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No further term below 32452843. The first three terms in the sequence are consecutive primes. Is this sequence finite? No further term below 179424673. The prime number theorem implies that this sequence is finite. Rosser proves that pi(x) < x/(log x - 4) for x >= 55, which can be used to show that there are no more terms. - Eric M. Schmidt, Aug 04 2014 LINKS J. B. Rosser. Explicit bounds for some functions of prime numbers. Amer. J. Math. 63 (1941), 211-232. MAPLE KD := proc() local a, b; a:=ithprime(n); b:=floor(a/10); if n=b then RETURN (a); fi; end: seq(KD(), n=1..1000000); MATHEMATICA Do[p = Prime[n]; k = Floor[p/10]; If[k == n, Print[p]], {n, 10^6}] (* Bajpai *) Select[Prime[Range], PrimePi[#] == Floor[#/10] &] (* Alonso del Arte, Jan 26 2014 *) CROSSREFS Cf. A075902, A114924, A067248. Sequence in context: A205631 A205333 A165689 * A203712 A061738 A350800 Adjacent sequences:  A236466 A236467 A236468 * A236470 A236471 A236472 KEYWORD nonn,less,fini,full AUTHOR K. D. Bajpai, Jan 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 18:58 EDT 2022. Contains 356016 sequences. (Running on oeis4.)