The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236472 a(n) = |{0 < k < n: p = prime(k) + phi(n-k), prime(p) + 2 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function. 3
 0, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0, 0, 3, 1, 2, 0, 2, 2, 2, 1, 0, 0, 4, 1, 0, 0, 0, 0, 5, 0, 1, 1, 1, 2, 1, 1, 3, 0, 0, 2, 2, 0, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 0, 0, 2, 1, 1, 3, 0, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Conjecture: a(n) > 0 for every n = 330, 331, .... We have verified this for n up to 80000. The conjecture implies that there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime. See A236464 for such primes p. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 EXAMPLE a(10) = 1 since prime(2) + phi(8) = 3 + 4 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(7) + 6 = 23 are all prime. a(877) = 1 since prime(784) + phi(877-784) = 6007 + 60 = 6067, prime(6067) + 2 = 60101 + 2 = 60103 and prime(6067) + 6 = 60107 are all prime. MATHEMATICA p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6] f[n_, k_]:=Prime[k]+EulerPhi[n-k] a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}] Table[a[n], {n, 1, 100}] CROSSREFS Cf. A000010, A000040, A022004, A236456, A236460, A236464, A236467, A236470. Sequence in context: A336013 A172363 A181877 * A175357 A232800 A248380 Adjacent sequences:  A236469 A236470 A236471 * A236473 A236474 A236475 KEYWORD nonn AUTHOR Zhi-Wei Sun, Jan 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 20:28 EDT 2021. Contains 346291 sequences. (Running on oeis4.)