OFFSET
1,6
COMMENTS
Conjecture: a(n) > 0 for every n = 330, 331, ....
We have verified this for n up to 80000.
The conjecture implies that there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime. See A236464 for such primes p.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(10) = 1 since prime(2) + phi(8) = 3 + 4 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(7) + 6 = 23 are all prime.
a(877) = 1 since prime(784) + phi(877-784) = 6007 + 60 = 6067, prime(6067) + 2 = 60101 + 2 = 60103 and prime(6067) + 6 = 60107 are all prime.
MATHEMATICA
p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6]
f[n_, k_]:=Prime[k]+EulerPhi[n-k]
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 26 2014
STATUS
approved