OFFSET
1,1
COMMENTS
The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n>=2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7,...].
psi(n,x):=sum(a(n,m)*x^m,m=0..d(n)), with the degree d(n):=A023022(n), n>=2, d(1):=1, equals (2^d(n))*Psi(n,x), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875/A181876 for the rational coefficient array of the monic Psi(n,x).
See A232624 for the (monic integer) minimal polynomials of 2*cos(2*Pi/n), called there MR2(n,x) = psi(n, x/2). - Wolfdieter Lang, Nov 29 2013
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
Wolfdieter Lang, A181875/A181876. Minimal polynomials of cos(2Pi/n).
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,3 (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
EXAMPLE
[-2, 2], [2, 2], [1, 2], [0, 2], [-1, 2, 4], [-1, 2], [-1, -4, 4, 8], [-2, 0, 4], [1, -6, 0, 8], [-1, -2, 4], [1, 6, -12, -32, 16, 32],...
MATHEMATICA
ro[n_] := (cc = CoefficientList[ p = MinimalPolynomial[ Cos[2*(Pi/n)], x], x]; 2^Exponent[p, x]*(cc / Last[cc])); Flatten[ Table[ ro[n], {n, 1, 30}]] (* Jean-François Alcover, Sep 28 2011 *)
CROSSREFS
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 08 2011
STATUS
approved