login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181877
Integer coefficient array for polynomials related to the minimal polynomials of cos(2Pi/n). Rising powers of x.
10
-2, 2, 2, 2, 1, 2, 0, 2, -1, 2, 4, -1, 2, -1, -4, 4, 8, -2, 0, 4, 1, -6, 0, 8, -1, -2, 4, 1, 6, -12, -32, 16, 32, -3, 0, 4, -1, 6, 24, -32, -80, 32, 64, 1, -4, -4, 8, 1, 8, -16, -8, 16, 2, 0, -16, 0, 16, 1, -8, -40, 80, 240, -192, -448, 128, 256, -1, -6, 0, 8, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, 5, 0, -20, 0, 16, 1, -16, 32, 48, -96, -32, 64, -1, 6, 12, -32, -16, 32, -1, -12, 60, 280, -560, -1792, 1792, 4608, -2304, -5120, 1024, 2048, 1, 0, -16, 0, 16, -1, 10, 100, -40, -800, 32, 2240, 0, -2560, 0, 1024, -1, -6, 24, 32, -80, -32, 64, 1, 18, 0, -240, 0, 864, 0, -1152, 0, 512, -7, 0, 56, 0, -112, 0, 64, -1, 14, 112, -448, -2016, 4032, 13440, -15360, -42240, 28160, 67584, -24576, -53248, 8192, 16384, 1, -8, -16, 8, 16
OFFSET
1,1
COMMENTS
The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n>=2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7,...].
psi(n,x):=sum(a(n,m)*x^m,m=0..d(n)), with the degree d(n):=A023022(n), n>=2, d(1):=1, equals (2^d(n))*Psi(n,x), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875/A181876 for the rational coefficient array of the monic Psi(n,x).
See A232624 for the (monic integer) minimal polynomials of 2*cos(2*Pi/n), called there MR2(n,x) = psi(n, x/2). - Wolfdieter Lang, Nov 29 2013
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,3 (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n,m) = [x^m]((2^d(n))*Psi(n,x)), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875(n,m)/A181876(n,m) for the rational Psi(n,x) coefficients.
EXAMPLE
[-2, 2], [2, 2], [1, 2], [0, 2], [-1, 2, 4], [-1, 2], [-1, -4, 4, 8], [-2, 0, 4], [1, -6, 0, 8], [-1, -2, 4], [1, 6, -12, -32, 16, 32],...
MATHEMATICA
ro[n_] := (cc = CoefficientList[ p = MinimalPolynomial[ Cos[2*(Pi/n)], x], x]; 2^Exponent[p, x]*(cc / Last[cc])); Flatten[ Table[ ro[n], {n, 1, 30}]] (* Jean-François Alcover, Sep 28 2011 *)
CROSSREFS
Cf. A232624. - Wolfdieter Lang, Nov 29 2013
Sequence in context: A180174 A336013 A172363 * A236472 A175357 A232800
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 08 2011
STATUS
approved