login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172363
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of A003269.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 6, 6, 6, 3, 1, 1, 4, 12, 24, 24, 12, 4, 1, 1, 5, 20, 60, 120, 60, 20, 5, 1, 1, 7, 35, 140, 420, 420, 140, 35, 7, 1, 1, 10, 70, 350, 1400, 2100, 1400, 350, 70, 10, 1
OFFSET
0,17
FORMULA
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*f(n-1, q) + f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 1. - G. C. Greubel, May 08 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 2, 2, 2, 2, 1;
1, 3, 6, 6, 6, 3, 1;
1, 4, 12, 24, 24, 12, 4, 1;
1, 5, 20, 60, 120, 60, 20, 5, 1;
1, 7, 35, 140, 420, 420, 140, 35, 7, 1;
1, 10, 70, 350, 1400, 2100, 1400, 350, 70, 10, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, q*f[n-1, q] + f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return 0 if (n==0) else 1 if (n<4) else q*f(n-1, q) + f(n-4, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
CROSSREFS
Cf. A003269 (f(n,1)), A172363 (q=1), A172364 (q=3).
Sequence in context: A263992 A180174 A336013 * A181877 A236472 A175357
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms, G. C. Greubel, May 08 2021
STATUS
approved