login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172360
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 6, 36, 36, 6, 1, 1, 11, 66, 396, 66, 11, 1, 1, 36, 396, 2376, 2376, 396, 36, 1, 1, 41, 1476, 16236, 16236, 16236, 1476, 41, 1, 1, 91, 3731, 134316, 246246, 246246, 134316, 3731, 91, 1, 1, 221, 20111, 824551, 4947306, 9070061, 4947306, 824551, 20111, 221, 1
OFFSET
0,12
COMMENTS
Start from the sequence 0, 1, 1, 1, 6, 6, 11, 36, 41, 91, 221, 296, 676, 1401, 2156, ..., f(n) = f(n-2) + 5*f(n-3), and its partial products c(n) = 1, 1, 1, 1, 6, 36, 396, 14256, 584496, 53189136, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).
FORMULA
T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q)), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q)=0, f(1,q) = f(2,q) = 1, and q = 5. - G. C. Greubel, May 09 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 6, 6, 6, 1;
1, 6, 36, 36, 6, 1;
1, 11, 66, 396, 66, 11, 1;
1, 36, 396, 2376, 2376, 396, 36, 1;
1, 41, 1476, 16236, 16236, 16236, 1476, 41, 1;
1, 91, 3731, 134316, 246246, 246246, 134316, 3731, 91, 1;
1, 221, 20111, 824551, 4947306, 9070061, 4947306, 824551, 20111, 221, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 5], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
CROSSREFS
Cf. A172353 (q=1), A172358 (q=2), A172359 (q=4), this sequence (q=5).
Sequence in context: A019180 A019103 A272619 * A175288 A349187 A153509
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms by G. C. Greubel, May 09 2021
STATUS
approved