login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236460 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that p = phi(k) + phi(m)/2 - 1, prime(p) + 4 and prime(p) + 6 are all prime, where phi(.) is Euler's totient function. 4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 2, 2, 1, 1, 2, 0, 4, 1, 2, 1, 5, 2, 1, 3, 1, 1, 3, 2, 6, 3, 0, 2, 5, 5, 6, 3, 4, 5, 3, 4, 4, 4, 6, 3, 2, 6, 2, 3, 2, 10, 2, 3, 1, 6, 1, 4, 0, 2, 3, 4, 2, 4, 0, 4, 0, 3, 2, 3, 0, 4, 0, 1, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,32

COMMENTS

Conjecture: a(n) > 0 for all n > 211.

This implies that there are infinitely many primes p with {prime(p), prime(p) + 4, prime(p) + 6} a prime triple. See A236462 for such primes p.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

EXAMPLE

a(30) = 1 since 30 = 13 + 17 with phi(13) + phi(17)/2 - 1 = 19, prime(19) + 4 = 67 + 4 = 71 and prime(19) + 6 = 73 all prime.

a(831) = 1 since 831 = 66 + 765 with phi(66) + phi(765)/2 - 1 = 20 + 192 - 1 = 211, prime(211) + 4 = 1297 + 4 = 1301 and prime(211) + 6 = 1303 all prime.

MATHEMATICA

p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+4]&&PrimeQ[Prime[n]+6]

f[n_, k_]:=EulerPhi[k]+EulerPhi[n-k]/2-1

a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-3}]

Table[a[n], {n, 1, 100}]

CROSSREFS

Cf. A000010, A000040, A001359, A006512, A022005, A236456, A236457, A236458, A236462, A236464.

Sequence in context: A283715 A078808 A030363 * A029388 A329972 A321005

Adjacent sequences:  A236457 A236458 A236459 * A236461 A236462 A236463

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jan 26 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)