The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236471 Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2). 1
 1, 1, 1, 2, 4, 1, 4, 13, 7, 1, 8, 38, 33, 10, 1, 16, 104, 129, 62, 13, 1, 32, 272, 450, 304, 100, 16, 1, 64, 688, 1452, 1289, 590, 147, 19, 1, 128, 1696, 4424, 4942, 2945, 1014, 203, 22, 1, 256, 4096, 12896, 17584, 13073, 5823, 1603, 268, 25, 1, 512, 9728 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums are A052936(n). Diagonal sums are A121449(n). The triangle T'(n,k) = T(n,k)*(-1)^(n+k) is the inverse of the Riordan array in A090285. LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened FORMULA T(n,0) = A011782(n), T(n,1) = A049611(n), T(n,n) = A000012(n) = 1, T(n+1,n) = A016777(n), T(n+2,n) = A062708(n+1). G.f.: (2*x^2-3*x+1)/((x^2-x)*y+4*x^2-4*x+1). - Vladimir Kruchinin, Apr 21 2015 T(n,k) = Sum_{m=0..n} C(m+k,2*k)*C(n-1,n-m). - Vladimir Kruchinin, Apr 21 2015 EXAMPLE Triangle begins: 1; 1, 1; 2, 4, 1; 4, 13, 7, 1; 8, 38, 33, 10, 1; 16, 104, 129, 62, 13, 1; 32, 272, 450, 304, 100, 16, 1; 64, 688, 1452, 1289, 590, 147, 19, 1; MATHEMATICA CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x, 0, 20}, {y, 0, 20}], x], y]//Flatten (* G. C. Greubel, Apr 19 2018 *) PROG (Maxima) T(n, k):=sum(binomial(m+k, 2*k)*binomial(n-1, n-m), m, 0, n); /* Vladimir Kruchinin, Apr 21 2015 */ (PARI) for(n=0, 20, for(k=0, n, print1(sum(m=0, n, binomial(m+k, 2*k)* binomial(n-1, n-m)), ", "))) \\ G. C. Greubel, Apr 19 2018 CROSSREFS Cf. A011782, A049611, A000012, A016777, A062708. Sequence in context: A085111 A181332 A204021 * A220328 A220935 A221290 Adjacent sequences:  A236468 A236469 A236470 * A236472 A236473 A236474 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Jan 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 13:35 EDT 2021. Contains 346424 sequences. (Running on oeis4.)