The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052936 Expansion of (1-x)*(1-2*x)/(1-5*x+5*x^2). 3
 1, 2, 7, 25, 90, 325, 1175, 4250, 15375, 55625, 201250, 728125, 2634375, 9531250, 34484375, 124765625, 451406250, 1633203125, 5908984375, 21378906250, 77349609375, 279853515625, 1012519531250, 3663330078125, 13254052734375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=0, a(n) is the number of generalized compositions of n+1 when there are 2^(i-1)+2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 925 Index entries for linear recurrences with constant coefficients, signature (5,-5). FORMULA G.f.: (1-x)*(1-2*x)/(1-5*x+5*x^2). a(0)=1, a(1)=2, a(2)=7, a(n) = 5*a(n-1) - 5*a(n-2). - Harvey P. Dale, Apr 20 2012 a(n) = Sum_{alpha=RootOf(1-5*z+5*z^2)} (1/5)*(1 - alpha)*alpha^(-1-n). The sequence beginning 2, 7, 25 ... has g.f. (2-3*x)/(1-5*x+5*x^2), a(n) = (1-2/sqrt(5))*(5/2-sqrt(5)/2)^n + (5/2+sqrt(5)/2)^n*(1+2/sqrt(5)). It is the binomial transform of Fib(2*n+3) and the second binomial transform of Fib(n+3). Also, its n-th term is the n-th term of the 3rd binomial transform of Fib(3*n+3) divided by 2^n. - Paul Barry, Mar 23 2004 Binomial transform of convolution of Fib(2*n+1) and (-1)^n. Binomial transform of Fib(n+1)^2. - Paul Barry, Sep 27 2004 a(n) = Sum_{k=0..n} C(n-1, k)*Fib(2*n-2*k+1). - Paul Barry, Jun 07 2005 a(2*n) = 5^(n-1)*Lucas(2*n+2) for n>=1 with a(2*0)=1 and a(2*n+1) = 5^n * Fibonacci(2*n+3). - G. C. Greubel, Oct 18 2019 MAPLE spec:= [S, {S=Sequence(Prod(Union(Sequence(Z), Sequence(Union(Z, Z))), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); seq(coeff(series((1-x)*(1-2*x)/(1-5*x+5*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Oct 18 2019 MATHEMATICA Join[{1}, LinearRecurrence[{5, -5}, {2, 7}, 30]] (* Harvey P. Dale, Apr 20 2012 *) Join[{1}, Table[If[EvenQ[n], 5^(n/2 -1)*LucasL[n+2], 5^((n-1)/2)* Fibonacci[n + 2]], {n, 30}]] (* G. C. Greubel, Oct 18 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-x)*(1-2*x)/(1-5*x+5*x^2)) \\ G. C. Greubel, Oct 18 2019 (Magma) I:=[2, 7]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Oct 18 2019 (Sage) def A052936_list(prec): P. = PowerSeriesRing(ZZ, prec) return P((1-x)*(1-2*x)/(1-5*x+5*x^2)).list() A052936_list(30) # G. C. Greubel, Oct 18 2019 (GAP) a:=[2, 7];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; Concatenation([1], a); # G. C. Greubel, Oct 18 2019 CROSSREFS Cf. A000032, A000045. Sequence in context: A070859 A048576 A018907 * A108152 A024482 A097613 Adjacent sequences: A052933 A052934 A052935 * A052937 A052938 A052939 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)