The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052934 Expansion of (1-x)/(1-6*x). 13
 1, 5, 30, 180, 1080, 6480, 38880, 233280, 1399680, 8398080, 50388480, 302330880, 1813985280, 10883911680, 65303470080, 391820820480, 2350924922880, 14105549537280, 84633297223680, 507799783342080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS With formula a(n) = (5*6^n + 0^n)/6, this is the binomial transform of A083425. - Paul Barry, Apr 30 2003 For n>=1, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007 a(n) = (n+1) terms in the sequence (1, 4, 5, 5, 5, ...) dot (n+1) terms in the sequence (1, 1, 5, 30, 180, 1080, ...). Example: a(4) = (1, 4, 5, 5, 5) dot (1, 1, 5, 30, 180) = (1 + 4 + 25 + 150 + 900), where (1, 4, 25, 150, ...) = first differences of current sequence. - Gary W. Adamson, Aug 03 2010 a(n) is the number of compositions of n when there are 5 types of each natural number. - Milan Janjic, Aug 13 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 922 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (6). FORMULA a(n) = 6*a(n-1), n>=2. a(n) = 5*6^(n-1), n>=1. - Vincenzo Librandi, Sep 15 2011 G.f.: (1-x)/(1-6*x). G.f.: 1/(1 - 5*Sum_{k>=1} x^k). E.g.f.: (1/6)*(1 + 5*exp(6*x)). - Stefano Spezia, Oct 18 2019 MAPLE spec := [S, {S=Sequence(Prod(Sequence(Z), Union(Z, Z, Z, Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); seq(`if`(n=0, 1, 5*6^(n-1)), n=0..30); # G. C. Greubel, Oct 18 2019 MATHEMATICA Join[{1}, NestList[6#&, 5, 20]] (* Harvey P. Dale, Nov 30 2015 *) PROG (PARI) vector(31, n, if(n==1, 1, 5*6^(n-2))) \\ G. C. Greubel, Oct 18 2019 (Magma) [1] cat [5*6^(n-1): n in [1..30]]; // G. C. Greubel, Oct 18 2019 (Magma) R:=PowerSeriesRing(Integers(), 22); Coefficients(R!( (1-x)/(1-6*x))); // Marius A. Burtea, Oct 18 2019 (Sage) [1]+[5*6^(n-1) for n in (1..30)] # G. C. Greubel, Oct 18 2019 (GAP) Concatenation([1], List([1..30], n-> 5*6^(n-1) )); # G. C. Greubel, Oct 18 2019 CROSSREFS Cf. A083425. Sequence in context: A242157 A094167 A051738 * A136785 A227383 A155195 Adjacent sequences:  A052931 A052932 A052933 * A052935 A052936 A052937 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 21:17 EDT 2022. Contains 355114 sequences. (Running on oeis4.)