Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 19 2018 03:45:36
%S 1,1,1,2,4,1,4,13,7,1,8,38,33,10,1,16,104,129,62,13,1,32,272,450,304,
%T 100,16,1,64,688,1452,1289,590,147,19,1,128,1696,4424,4942,2945,1014,
%U 203,22,1,256,4096,12896,17584,13073,5823,1603,268,25,1,512,9728
%N Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2).
%C Row sums are A052936(n).
%C Diagonal sums are A121449(n).
%C The triangle T'(n,k) = T(n,k)*(-1)^(n+k) is the inverse of the Riordan array in A090285.
%H G. C. Greubel, <a href="/A236471/b236471.txt">Table of n, a(n) for the first 100 rows, flattened</a>
%F T(n,0) = A011782(n), T(n,1) = A049611(n), T(n,n) = A000012(n) = 1, T(n+1,n) = A016777(n), T(n+2,n) = A062708(n+1).
%F G.f.: (2*x^2-3*x+1)/((x^2-x)*y+4*x^2-4*x+1). - _Vladimir Kruchinin_, Apr 21 2015
%F T(n,k) = Sum_{m=0..n} C(m+k,2*k)*C(n-1,n-m). - _Vladimir Kruchinin_, Apr 21 2015
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 4, 1;
%e 4, 13, 7, 1;
%e 8, 38, 33, 10, 1;
%e 16, 104, 129, 62, 13, 1;
%e 32, 272, 450, 304, 100, 16, 1;
%e 64, 688, 1452, 1289, 590, 147, 19, 1;
%t CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x,0,20}, {y,0,20}], x], y]//Flatten (* _G. C. Greubel_, Apr 19 2018 *)
%o (Maxima)
%o T(n,k):=sum(binomial(m+k,2*k)*binomial(n-1,n-m),m,0,n); /* _Vladimir Kruchinin_, Apr 21 2015 */
%o (PARI) for(n=0,20, for(k=0,n, print1(sum(m=0, n, binomial(m+k,2*k)* binomial(n-1,n-m)), ", "))) \\ _G. C. Greubel_, Apr 19 2018
%Y Cf. A011782, A049611, A000012, A016777, A062708.
%K nonn,tabl
%O 0,4
%A _Philippe Deléham_, Jan 26 2014