The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179234 a(n) is the smallest prime q such that, for the previous prime p and the following prime r, the fraction (r-q)/(q-p) has denominator n in lowest terms. 10
 3, 11, 29, 367, 149, 521, 127, 1847, 1087, 1657, 1151, 4201, 2503, 2999, 5779, 10831, 1361, 9587, 30631, 19373, 16183, 36433, 81509, 28277, 31957, 25523, 40343, 82129, 44351, 102761, 34123, 89753, 282559, 134581, 173429, 705389, 404671, 212777, 371027, 1060861, 265703, 461801, 156007, 544367, 576881, 927961, 1101071, 1904407, 604171, 396833 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The conjecture that a(n) exists for every n is a weaker conjecture than a related one in the comment to A179210. LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..123 EXAMPLE For q=3 we have (r-q)/(q-p)=2/1. Therefore, a(1)=3. For q=5: (r-q)/(q-p) = 1/1; for q = 7: (r-q)/(q-p) = 2/1; for q = 11: (r-q)/(q-p) = 1/2. Therefore, a(2)=11. MATHEMATICA f[n_] := Block[{p = 2, q = 3, r = 5}, While[ Denominator[(r - q)/(q - p)] != n, p = q; q = r; r = NextPrime@ r]; q]; Array[f, 50] p = 2; q = 3; r = 5; t[_] = 0; While[q < 100000000, If[ t[ Denominator[(r - q)/(q - p)]] == 0, t[ Denominator[(r - q)/(q - p)]] = q]; p = q; q = r; r = NextPrime@ r]; t@# & /@ Range@100 (* Robert G. Wilson v, Dec 11 2016 *) PROG (PARI) a(n)=my(p=2, q=3); forprime(r=5, default(primelimit), if(denominator((r-q)/(q-p))==n, return(q)); p=q; q=r) CROSSREFS Cf. A001223, A168253, A179210, A279067. Sequence in context: A259594 A293010 A236467 * A009183 A165893 A106397 Adjacent sequences:  A179231 A179232 A179233 * A179235 A179236 A179237 KEYWORD nonn AUTHOR Vladimir Shevelev, Jan 05 2011 EXTENSIONS Revised definition, new program, and terms past a(5) from Charles R Greathouse IV, Jan 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 01:03 EST 2020. Contains 332195 sequences. (Running on oeis4.)