OFFSET
1,1
COMMENTS
The conjecture that a(n) exists for every n is a weaker conjecture than a related one in the comment to A179210.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..123
EXAMPLE
For q=3 we have (r-q)/(q-p)=2/1. Therefore, a(1)=3.
For q=5: (r-q)/(q-p) = 1/1; for q = 7: (r-q)/(q-p) = 2/1; for q = 11: (r-q)/(q-p) = 1/2. Therefore, a(2)=11.
MATHEMATICA
f[n_] := Block[{p = 2, q = 3, r = 5}, While[ Denominator[(r - q)/(q - p)] != n, p = q; q = r; r = NextPrime@ r]; q]; Array[f, 50]
p = 2; q = 3; r = 5; t[_] = 0; While[q < 100000000, If[ t[ Denominator[(r - q)/(q - p)]] == 0, t[ Denominator[(r - q)/(q - p)]] = q]; p = q; q = r; r = NextPrime@ r]; t@# & /@ Range@100 (* Robert G. Wilson v, Dec 11 2016 *)
PROG
(PARI) a(n)=my(p=2, q=3); forprime(r=5, default(primelimit), if(denominator((r-q)/(q-p))==n, return(q)); p=q; q=r)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jan 05 2011
EXTENSIONS
Revised definition, new program, and terms past a(5) from Charles R Greathouse IV, Jan 12 2011
STATUS
approved