The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259594 Denominators of the other-side convergents to sqrt(6). 2
 1, 3, 11, 29, 109, 287, 1079, 2841, 10681, 28123, 105731, 278389, 1046629, 2755767, 10360559, 27279281, 102558961, 270037043, 1015229051, 2673091149, 10049731549, 26460874447, 99482086439, 261935653321, 984771132841, 2592895658763, 9748229241971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose that a positive irrational number r has continued fraction [a(0), a(1), ... ]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows: p(i)/q(i) = [a(0), a(1), ... a(i)] and P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1]. The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0. Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1). FORMULA p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = Q(i). a(n) = 10*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 21 2015 G.f.: -(x+1)*(x^2-2*x-1) / (x^4-10*x^2+1). - Colin Barker, Jul 21 2015 Closed form: a(n) = (((-1)^n-5/2)*sqrt(6)/6+1-1/2*( -1)^n)*(5-2*sqrt(6))^(-1/4)*(5-2*sqrt(6))^(1/2*n)*(5-2*sqrt(6))^(1/4*(-1)^n)+((5 /2-(-1)^n)*sqrt(6)/6+1-1/2 *(-1)^n)*(5+2*sqrt(6))^(1/2*n)*(5+2*sqrt(6))^(1/4*(-1)^n)*(5+2*sqrt(6))^(-1/4). - Paolo P. Lava, Aug 05 2015 EXAMPLE For r = sqrt(6), the first 7 other-side convergents are 3, 7/3, 27/11, 71/29, 267/109, 703/287, 2643/1079. A comparison of convergents with other-side convergents: i    p(i)/q(i)           P(i)/Q(i)    p(i)*Q(i)-P(i)*q(i) 0    2/1     < sqrt(6) <    3/1               -1 1    5/2     > sqrt(6) >    7/3                1 2    22/9    < sqrt(6) <   27/11              -1 3    49/20   > sqrt(6) >   71/29               1 4    218/89  < sqrt(6) <  267/109             -1 5    485/198 > sqrt(6) >  703/287              1 MATHEMATICA r = Sqrt; a[i_] := Take[ContinuedFraction[r, 35], i]; b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1]; t = Table[FromContinuedFraction[b[i]], {i, 1, 35}] u = Denominator[t]  (*A259594*) v = Numerator[t]    (*A259595*) PROG (PARI) Vec(-(x+1)*(x^2-2*x-1)/(x^4-10*x^2+1) + O(x^50)) \\ Colin Barker, Jul 21 2015 CROSSREFS Cf. A041006, A041007, A259595. Sequence in context: A159229 A239713 A122023 * A293010 A236467 A328550 Adjacent sequences:  A259591 A259592 A259593 * A259595 A259596 A259597 KEYWORD nonn,easy,frac AUTHOR Clark Kimberling, Jul 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:40 EST 2021. Contains 349526 sequences. (Running on oeis4.)