OFFSET
0,1
COMMENTS
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..100
Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
FORMULA
From M. F. Hasler, Feb 13 2009: (Start)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
a(n) = ((2 + sqrt(6))^(n+1) + (2 - sqrt(6))^(n+1))/2^(ceiling(n/2) + 1). - Robert FERREOL, Oct 13 2024
E.g.f.: sqrt(2)*sinh(sqrt(2)*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(sqrt(2)*x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Oct 14 2024
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
PROG
(Magma) I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! For correct index & more terms:
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ (End)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy,changed
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Jun 10 2015
STATUS
approved